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These notes outline some of the key ideas concerning electromagnetic waves in
a plasma. The subjects of plasma physics and plasma astrophysics are vast. The
notes here are necessarily superficial. A more complete introduction can be found
in An Introduction to Plasma Theory by Dwight Nicholson. Yet more detailed
treatments can be found in Radiation Processes in Plasmas by G. Bekefi and Plasma
Astrophysics by D. Melrose. The Magnetoionic Theory is treated at length in the
classic monograph by J. Ratcliffe.

1 Length scales and time scales

A plasma is a ionized gas composed of roughly equal numbers of electrons and
ions {quasi-neutral}. To keep things simple, we will be considering a fully ionized
gas. Furthermore, we will only consider a hydrogen plasma; that is, a gas of equal
numbers of electrons and protons. A plasma is characterized by collective effects.

1.1 Debye shielding

Consider a test particle with a positive charge ¢p. In a vacuum it would have an
electric potential
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If we now introduce the test charge into a uniform plasma of infinite extent it repels
surrounding protons and attracts the electrons. Collectively, they form a shielding
cloud of particles. If we wait until the system equilibrates, we find that the electric
potential due to the test charge in the plasma is
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The potential of the test charge falls off much more rapidly in a plasma than it does
in a vacuum due to the shielding influence of the charge cloud. For distancesr > Ap,
the Debye length, the influence of the test charge is negligible. This phenomenon is
called Debve shielding. The Debye length can be shown to be

kpd 1/2
A0 = (et
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where 7" is the temperature (taken here to be the same for electrons and protons), n
is the electron (or proton) number density, and e is the electric charge. Numerically,
Ap = 5y/T/n. In the solar wind, T' &~ 10° K and n ~ 5 cm ™3, yielding Ap ~ 7
m. A defining characterisitic of a plagsma is that it has a large number of particles
in Debye sphere: i.e., A = (dn/3)nA}, > 1, a number sometimes refered to as the
plasma parameter.

1.2 Plasma frequency

Consider as uniform slab of plasma. of thickness L in the 2 direction and very large
dimensions in the y and z dimensions. The plasma is composed of equal numbers of
electrons and protons. We take the proton mass to be effectively infinite compare
to the electron mass. The protons are therefore effectively fixed in place. Suppose
we displaced the electrons from the protons by a distance § < L. An electric field is
set up that would exert a force on the electrons, pulling them back to the protons.
Letting the electrons go, they would rush back toward the protons, overshoot, and
an oscillation would be set up with a characteristic frequency.

Use Poisson’s equation in one dimension: 9.F = 4wp. With the displacement
0 we then have E = 4mned. The charge per unit area is just —nel and the (force
per unit area) is (the electric field) times (the charge per unit area): F = mgé =
(—neL)(4mned) = —4mn2e?6L. But the (force per unit area) is just the (mass per
unit area) times acceleration. The (mass per unit area) is nM,. L and so we can write

drne?

nmeLé = dnn?e’ L — § + d =0

Mg

which is the equation of a harmonic oscillator with a frequency wpe = (4dmne?/me)1/?.
This is the electron plasma frequency. A similar frequency can be defined for the
protons (or more generally, ions) that is smaller then wy, in the ratio (m,/m;)'/2.
Note that in a thermal plasma, if we take the product of the Debye length and the
plasma, frequency, we obtain

N (kpT/4mne?)!/? _ kBT _
D pe (47'r'n,62/me)1/2 me th-

The cyclic plasma frequency is just vpe = /ne?/rm, ~ Qné/ ? kHz.
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1.3 Gyrofrequency

Now consider the motion of electrons and protons in the presence of a magnetic
field. The Lorentz force is

F=mv=2v xB.
c
For simplicity, we take B = B,Z. We can then write three equations of (electron)

motion:
Uy = —WpeVy Uy = WpReVx 9, =10
where wpe = eB/mec is the electron gyrofrequency and ¢ is an arbitrary phase. We
then have
Uy = v cos(wpet + ¢} Uy = v sin{wpet + @)

and v, = vy =constant and v, = (v2 + 'US)I/2 =constant.
Integration vields

v vL .
Uy = Zg + w;‘ COS(wBet + qf)) Uy = Ug + UJ; Slil(wBet + 95)
e e

The electron’s trajectory is a helix, with uniform speed parallel to the magnetic field
and circular motion perpendicular to the magnetic field. The radius of the circle is
the Larmor radius ry, = v, fwpe. Taking v ~ vy, we have in analogy to the product
Apwp that rrwpe = v The cyclic gyrofrequency is Qp, = eB/2rm.c ~ 2.88B MHz,
with B in Gauss.

1.4 Collision frequency

The derivation of the collision frequency is a plasma is somewhat involved and
therefore won’t be reproduced here. It is interesting to note that if the collision time
is defined to be the time required for a given particle to deviated from its initial
trajectory by 90°, the cumulative effects of small-angle collisions far outweight the
occasional large-angle collision. If one does the calculation, it is found that the
electron-proton collision frequency for a large-angle collision is of order
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where v is the electron speed. In contrast, the collision rate due to the cumulative
effects of small angle collisions is
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We see that the electron-proton collision frequency v, due to small angle collisions
is a factor 2In A larger than vy, and the collision time is therefore correspondingly
shorter. Note the reappearance of the plasma parameter. Note also that the collision
frequency in both cases is proportional to 1/%%. The kinetic energy of the particle is
E = mwv?/2 and so v, o« E~%/2, Calculations show that the electron-electron collision
frequency is approximately the same as the electron-proton collision frequency. The
proton-proton collision frequency is found to be a factor & (my/me)/? smaller
than the electron-proton, and the proton-electron collision frequency is = (my,/m.)
smaller.

2 EM waves in a plasma

In this section we’ll consider EM waves in a vacuum, an unmagnetized plasma, and
in a magnetized plasma.

2.1 EM waves in a vacuum

Recall Maxwell’s equations:

V- -D=dnrp

V-B=0
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VxE= _19B
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Here D = ¢E and B = pH, where € is the dielectric constant and j is the magnetic
permeability. In a vacuum, we have no charges p or currents J, and pp = ¢ = 1).

Maxwell’s equations then become

V-E =0

V-B=0

VxE:—EQE
e Ot

1 0E
B = -
VX c Jt

Taking the curl of the third equation and the partial derivative of the last equation
wrt time yields
1 oB

VX(VXE)Z_EVX@#{



and

v X a_B -- £32_..E
ot ¢ o8’
respectively, and so
1 9%E
V x (V x E) = “5—2——5}7
Using the identity V x (V x E) = V(V - E) — V2E we end with
o L OPE 0
2 A2 ’

This is a (vector) wave equation for the electric field with plane wave solutions that go
as e!Twl - Qubstituting this into the wave equation yields —w?E + ¢2k°E, or k2 =
w? /2. This last relation, relating w and k, is called the dispersion relation. Before
continuing, it is worth taking a brief detour to consider a plasma as a dielectric.

2.2 Plasma as a dielectric

The application of an electric field to a dielectric induces a polarization P, defined
to be the induced dipole moment per unit volume

P = [drp(r)r.

For the case of a uniform plasma, if n electrons per unit volume are moved a distance
r, the equivalent dipole moment per unit volume is just P= ner.

By definition, D=E-+47P. If P is a linear function of the electric field I such
that P=xE, we can write D= ¢E, where ¢ = 1 + 4wy is the dielectric constant of
the medium.

Now consider the response of a (unmagnetized) plasma to an electromagnetic
wave with an electric field E ~ exp(iwt). We ignore the motion of the massive
protons compared to that of the electrons. We also ignore collisions. The equation
of motion of a single electron is then

m¥ = eE = —mw’r

so that r = (—e/mw?)E. From this and the expression for P above we find that
P = (—ne?/mw?)E, or x = —ne?/mw?. It then follows that for an unmagetized
plasma, the dielectric constant is
E:1m41m62 _ MEJ_EZ’E
mw? w2’
The response of the plasma to an electromagnetic wave is embodied in the dielectric
constant.
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2.3 EM waves in an unmagnetized plasma

Continuing, we consider Maxwell’s equations for an unmagnetized (cold) plasma:

V-D=0

V-B=10
1B
VxB=—oor
18D
VxBe= oo

Noting that D= ¢E and proceeding as before, we obiain
¢ O°E
c* Ot*
Substituting a plane wave solution, we obtain the following dispersion relation k% =
ew?/c?, or
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We note several features of EM waves in a plasma. First, € = k%c?/w? = 12, where
{ is the refractive index. The group velocity is vy = Ow/0k = pc and the phase
velocity is vp, = w/k = ¢/p. Since p < 1 in a plasma, vg < ¢ and vy, > ¢. Second,
note that if w < omegaye we have ¢ < 0 and p is imaginary. In other words, EM
wave are non-propagating when their frequency is less than the plasma frequency.

2.4 EM waves in a magnetized plasma

A magnetized plasma is a very complex and rich medium. It can support many wave
modes; not just EM modes, but a large variety of MHD modes as well. Here we touch
on just two special cases to illustrate the properties of EM waves in a magnetized
plasma. I will comment on the slightly more general framework provided by the
magnetolonic theory in the last section. In all cases, we will only consider electron
motion, taking the ions to be fixed; i.e., a cold plasma.

2.4.1 Case 1: Wave propagation perpendicular to the magnetic field

As before, consider a plasma permeated by a constant magnetic field B = B.2. In
general, for an EM perturbation, the force on an electron is given by the Lorentz
force and the electron equation of motion is:

. e
F=mnv = —-enk - -nv x B.
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We consider EM waves propagating perpendicular to B. There are two possibil-
ities. The electric field can be parallel to B, or the the electric field can be in the
z — y plane perpendicular to B. In the first case, the electric field induces electron
motion parallel to B. In this case, the v x B term vanishes and the problem becomes
identical to that in an unmagnetized plasma. The dispersion equation for this or-
dinary mode is therefore the same as that for and EM wave in an unmagnetized
plasma: w? = wﬁe + k%2,

Now consider the second possibility. The electric field induces motion in the
z — y plane and the v x B force then causes another velocity component in the
x — y plane. Note that the electron motion of the ordinary mode wave and this
extraordinary mode wave are orthogonal. Again assuming plane wave solutions we
can write

_ e , e
—lwMely = —cEBy — ~vy B, — WMoy = —ely + ~v, B,
¢ ¢

and from Maxwell’s equations for V x B and V x B we find that

Uy = )E
T dxne Y

Substituting into the expressions above, we can write in matrix notation

—iw ( ik%c? —gw
’U frovernd
v drnew  dmne

—iome( i) te ED. (155 + ) ( 5, ) _ ( 0 )

eRg [ —iw L ik2e? —ie
e (Mme) Zwm(tlvmew + ZTrne + 6’) EU 0

The determinant of the coefficients must be zero, and so we find after some algebra
the dispersion relation for the extraordinary mode:

2 .22 2 9 1.2.9 2.9
(I—W)(l Ac_w) wBekc“wae_‘O
2 2 2 2 2 -
e Whe Wpe Whe Wae

From this caumbersome expression we can extract a factor k%c?/w? = p2 and,
again after some manipulation, we obtain

.2 2 2 .2 .2
2_A,c _ | Wpe W Wpe
wo=r o o

UH

Note that a new frequency has been introduced: wfy = w3, + w}, defines the
upper hybrid frequency. The x-mode dispersion relation is complex. Two important
properties are the presence of resonances and cutoffs. A resonance is occurs at any
frequency where & — zoo; a cutoff occurs at any frequency where & — 0. A
casual look at the dispersion relation shows that the resonances occur at w = 0 and
w = wypy. The cutoffs are found by setting £ = 0 and then solving for w. One finds
that
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The x-mode is somewhat strange in that it is partially transvers and partially longi-
tudinal. That is, the electric field of the EM mode has components both parallel and
perpendendicular to the direction of propagation. The electric vector traces out an
ellipse in the x - y plane. Note that in the high frequency limit, the o- and x-modes
become fulty linearly polarized.

2.4.2 Case 2: Wave propagation parallel to the magnetic field

We now consider waves propagating parallel to B. Performing an analysis similar to
Case 1, we find that

—dmne T

A ;
—ikBy =y, — R, kB, = vy — =B,
c C c ¢
and
¢ s—ik’c iw ¢ s—ik?c  dw
U‘Tx—éhm( w +?)Eﬂ: Uyw_liwn( W W)Ey

which can be used to form a maftrix equation, the solution of which yields

1 k2c? w2 w%e( k2c?y 2
( t w? wz) T\ )
pe pe pe

Taking the square root of the above and again extracting the refractive index yields
the follwoing dispersion relations:

PR L
+ w? 1+ wpe/w

There are two wave modes corresponding to the two signs in the denominator of
the last term. Taking the ”"+” sign, the corresponding wave mode is right circularly
polarized (R-wave) and for the -” sign, it is left circularly polarized (L-wave). That
is, the electric eld vector of the EM mode traces out circle in the counter-clockwise
(RCP) or clockwise (LCP) sense. There are again curoffs and resonances in the
dispersion relations. The R-wave has a resonance at w = —wg.. This makes physical
sense because the sense and frequency of rotation of the electric field matches the
gyromotion of the electrons. The L-wave has no resonances. The cutoffs are again

found by setting k = 0:
w
WrL = F }2?8 + nge +w%e/4
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It is possible to show that these cutoffs are equivalent to those found for the x-mode
in the case 1. Note again that in the high-frequency limit, the R- and L-mode
propagate near c.

2.5 Faraday rotation

An important phenomenon arising from the fact that the x- and o-modes are de-
seribed by different dispersion relations is Faraday rotation. A linearly polarlized
wave can be regarded as a superposition of the two circularly polarized modes. In
a magnetoactive medium, the propagation speeds of the two modes differ and the
two circularly polarized modes therefor become increasingly out of phase as they
propagate. As a result, the plane of polarization rotates as the wave propagates.

The change in the phase ¢ of a circularly polarized mode as it travels a distance
d is just 2wd/A = k-d. If the properties of the medium change along d we then
have

d
brp = /o kg, rds

where kp = w fErr/c. X <« 1and Y <« 1 we find (solving for & using the result
from §2.4.2) that

b 21 = (1 48],

The angle through which the plane of polarization rotates is then

1 rd wﬁewge 2me

1 d 3 d
A = — kp—Fk = = g = Byds.
Qfo (kg = k)ds 20 cw? ds miciw? /0 noyes

Faraday rotation is an observabie effect and is an important diagnostic of cosmic
magnetic fields. Note, however, that the integral over By is constrained. While
we used the results of our analysis for propagation parallel to B, a more general
treatment yields the above result.

2.6 Plasma waves

We introduced the electron plasma frequency in §1 as a natural oscillation frequency
of a plasma. Plasma oscillations are electrostatic oscillations, not an EM mode.
Nevertheless, they are worth mentioning for later use. Their dispersion relation
can be simply written as w? = wge. Since there is no & dependence, plasma waves
(or Langmuir waves) are non-dispersive and therefore non-propagating. However,
if we include consideration of the plasma temperature, a longitudinal disturbance
causes adiabatic compression and a pressure term comes in as VB, = 3kpTVn. The
dispersion relation for plasma waves is then modified as



w? == wge + Bkgﬂthz — W R :}pre(l + 3){.“,2)\%3/2)

The plasma waves are thus dispersive and have a group velocity vg = 3(EAp)ue.

3 Magnetionic theory

The magnetoionic theory is a generalization of the above special cases. That is,
it considers modes that propagate in arbitrary directions relative to the magnetic
field in a cold plasma wherein the ions are fixed. It was originally developed to
describe the propagation of EM modes in the ionosphere but it is valid under many
circurnstances in the solar corona as well.

Two approximate regimes are commonly considered in the magnetoionic theory
that correspond rather closely to Case 1 and Case 2 considered in the previous sec-
tion. Let € be the angle between k and B. Defining the two magnetoionic parameters
X = ge Jw? and Y = wp,/w one can define two propagation regimes, depending on
whether the quantity

Y sin? ¢
(I —X)cosf

is small or large. If is is large, the propagation regime is referred to as ”quasi-
fongitudinal” or "quasi-circular”, whereas if it is small, the propagation regime is
referred to as "quasi-transverse” or "quasi-planar”. When X « 1 and Y < 1, the
propagation angle that separates the two regimes is approximately 8, ~ cos™! (Y/2).
Thus, at high frequencies, the quasi-circular approximation applies for all angles
except for a rather narrow range around @ = w/2. On the other hand, when X ~ 1,
the quasi-planar approximation holds except for a small range around § = 0. Usually,
the quasi-circular approximation is valid. When this is the case, the o-mode is left-
hand circularly polarized (for cosf > 0) and the x-mode is right-hand circularly
polarized.

As for Case 1 and Case 2 propagation, the dispersion relation for the general case
implies the presence of cutoffs and resonances. The cutoffs are the same as those
derived in §2.4; namely, at w = wpe, wr, and wr. The expression for the resonances
is somewhat more complicated in the general case:

2 2,,2

Wi = wyH? + why Aws Wi cos? g]1/2

The cutoff at w = wpe and the resonance at w = w. apply to the o-mode
whereas the cutoffs at w = wg 1, and the resonance at w = wy apply to the x~-mode.
The cutoffs and resonances divide the refractive index curves into four branches,
two for each mode. The low frequency branch of the o-mode is called the whistler
mode and the low frequency branch of the x-mode is called the z-mode. The low
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frequency branches are prevented by stop bands from propagating to infinity. The
high frequency branches, which retain their name as the x- and o-modes, are the
ones of astrophysical interest because they do propagate to infinity. Note that for
a medium like the Sun’s corona for which the plasma density and magnetic field
strength decrease with radius, the parameters X and Y decrease with radius and the
x- and o-modes rapidly tend to the high frequency limit.

11



